

Senior Design Project
Project short-name: Planetarium

Low Level Design Report

Boran Yıldırım, Kıvanç Gümüş, Ümitcan Hasbioğlu, Hüseyin Eren Çalık, Yiğit Bedişkan

Supervisor: Uğur Doğrusöz
Jury Members: Fazlı Can and Uğur Güdükbay

Introduction 3
Object design trade-offs 3

Reliability vs Efficiency 3
Portability vs Performance 3
Functionality vs User-Friendliness 4

Interface documentation guidelines 4
Engineering standards 4

2. Packages 5
Presenter Package 5
Model Package 6
View Package 7

3. Class Interfaces 8
Presenter 8
Model 10
View 13

1

Definitions, Acronyms and Abbreviations
TCP: Transmission Control Protocol
UDP: User Datagram Protocol
UML: Unified Modelling Language

2

1.Introduction

In this report, the low-level architecture of Planetarium is proposed. The trade-offs
of our design and engineering standards will be explained. What follows will be the in
documentation guidelines. After that, information about the packages and interfaces
of Planetarium’s systems will be presented. Finally, the class diagrams and a
detailed look into each of Planetarium’s software components will conclude the
report.

a. Object design trade-offs
In software development, when choosing to enhance a certain feature of a

program, usually another one has to be sacrificed. Almost all decisions with respect
to design, comes with certain trade-offs and implications. For this reason, we spent a
lot of time identifying Planetarium’s trade-offs during the design process to create the
most optimized system according to the project’s needs. In the following sections,
trade-offs we considered will be presented.

a. Reliability vs Efficiency

Since efficiency is important in online games which need rapid
updates and changes in game screen, it is prefered to give importance to
efficiency instead of reliability. Because, if the user is not provided with a
proper game view, the reliability constraint also won’t be satisfied. A UDP
server is used instead of TCP a server in order to make the client and server
connection as fast as possible. Although, TCP is a more reliable protocol, it is
preferred to use reliable UDP to make the game efficient.

b. Portability vs Performance

The game aims to be reachable for a larger group of people so

portability is an important issue to make the game available in all platforms.
Because of this reason we use Unity game engine which is cross-platform
application. We prefer to give importance to portability instead of
performance. The game could have been implemented for a single platform
however we decide to use as many platforms as possible for wider usage.
Portability is preferred instead of performance to make the game reachable
from any platform.

3

c. Functionality vs User-Friendliness

The game is about civilizations interacting in cosmos so it is mimicking

a far future real life scenario. The game’s relevant to the real life and it is
being science-based; provides developers the ability to extend the features of
the game as much as we want. Yet, the game has to provide certain level of
entertainment in which the user won’t get lost so that they can enjoy the
application rather than struggling to work themselves through overfilled
features. To deliver this, the primary game features(e.g. gathering resources,
market transactions etc.) are designed to be complex as well as being
entertaining and easily playable.

b. Interface documentation guidelines
In this report, all the class names are named in the standard
‘ClassName’ format, where all of these names are singular. The
variable and method names are camel case and follow a similar rule as
in ‘variableName’ and ‘methodName()’. In the class description
hierarchy, the class name comes first, seconded by the attributes of the
class, and finally concluded with the methods. The detailed outline
looks similar to the one presented below:

Class Name

Description of Class

Attributes

Type of Attribute : Name of Attribute

Methods

NameOfMethod(ParametersOfMethod): | Description of Method

c. Engineering standards
For the descriptions of the class interfaces, diagrams, scenarios, use cases,
subsystem compositions and hardware depictions, this report follows the UML
guidelines.

4

2. Packages

a. Presenter Package

Auth: is responsible for user related tasks in database. Login/Signup and profile updates are
done from this class.
CacheManager: manages caching of database values in local. We as a developer will
choose which values will be cached.
UserObjectManager: stores user’s game objects in database and load them from database.
TransactionManager: works as a bank, transfers money between users and send new
items to them.
DatabaseManager: is responsible for database access and querying.
WarStateManager: is responsible for managing the multiplayer game system with the
Photon Unity server.

5

UnityGameEngine: responsible for rendering graphics and initialize objects visually.

b. Model Package

Player: is responsible for modelling player object that will be used by Unity throughout the
game.
Planet: is responsible for modelling planet object that will be controlled and modified by the
player throughout the game.
Mine: holds the type of the mines that will be a resource to be gathered by the player
GameObject: parent of major game objects that will be generated and destroyed throughout
the gameplay by the player and also the game engine.
Worker: holds the values for the worker object that will be controlled by the player to gather
resources from his/her planet.
Soldier: holds the damage data for the soldier object that will be used by the player for
battles.
Flying: parent of flying objects
SpyFlying: holds the data for the spyflying object which will be used by the player to spy
other planets.

6

WarFlying: holds the data for the warflying object which will be used by the player to attack
other planets.
StorageFlying: holds the data for the storage flying object which will be controlled by the
user to transport mines from a planet that is defeated to player’s own planet.
MotherShip: holds the data of the mothership of the player.
Structure: holds the data for structure objects which are the buildings and defence
structures.
DefenceStructure: child of structure which additionally includes damage data.

c. View Package

ViewManager: parent of the main menu, game screen and war screen managers.
MainMenuManager: sets up the main menu view.
GameScreenManager: sets up the game(planet) view where the user gameplay is.
WarScreenManager: sets up the battle(war) scene where two different users battle with each
other.

7

3. Class Interfaces

a. Presenter

Auth

Manages user registration, login and information update operations.

Attributes

instance: Auth
user : User
auth: FirebaseAuth
isLogin: boolean
database: DatabaseManager

Methods

Auth() | private constructor for singleton
getInstance() | returns the instance of Auth
createNewUser(User): | creates the new user in database
signinUser() | signin for already created account
signin() | called from createNewUser() and signinUser() to signin user
addUserToDatabase() | adds the new user to database after it is created
updatePlayer() | updates phonenumber and username

DatabaseManager

Manages database operations of the game.

Attributes

instance:DatabaseManager
database:FirebaseDatabase

Methods

CacheManager() | private constructor for singleton
getInstance() | returns the instance of DatabaseManager
addPlanet(Planet) | adds the planet datas to database
addUser(User) | User object
findUserWithName(name:String) User | returns User object with given id
findUserWithID(id:String) User | returns User object with given id
findPlanet(id : String) | return Planet object with given id
listNeighborPlanet() : List

8

WarStateManager

Manages databese operations during the war state of the game.

Attributes

warrior1:String | User1
warrior2:String |User2

Methods

WarStateManager(w1:String, w2:String) | private constructor
UpdateDatabase()
UpdateOnExit()

UserObjectManager

Manages database operations for User object.

Attributes

instance:UserObjectManager
database:DatabaseManager
gameObject:List<GameObject>

Methods

UserObjectManager() | private constructor for singleton
getInstance() | returns the instance of UserObjectManager
addObjectToDatabase() |add singleton object to database
getObjectListFromDatabase()| returns singleton object from database

TransactionManager

Manages database operations for users transactions.

Attributes

transactionID: String
buyerID:String
sellerID:String
timestamp:Time
database:DatabaseManager

Methods

createTransaction() | creates a pipe for transaction between two users

9

GameObjectTransaction

Manages the game object trades between players.

Attributes

gameObject: GameObject

MineTransaction

Manages the mine trades between players.

Attributes

mine: Mine

UnityManager

Manages the Unity Game Engine

Attributes

gameObject: GameObject

Methods

create(GameObject) bool | create game object for player and returns boolean.
mine(Worker) bool | mine with given worker object.
useTelescope() |
decleareWar(String) | starts war against given user id.
sellitems(GameObject) bool | sells given gameObject.
tradeItems(GameObject) bool | trade given gameObject.

b. Model

Player

Player model

Attributes

planet:Planet
money:double
level:int
experience:double

10

Planet

Planet model

Attributes

planetID : String
gameObject: gameObject[]

Methods

createNewPlanet() | creates new planet

Mine

Mine model

Attributes

mineType : enum

GameObject

Game object model

Attributes

objectID : String
price : double
health :double
level : double
type : enum
cost : double

Methods

levelUp() bool | makes the given objects level up.

Worker

Worker model

Attributes

performance : double

Methods

gather(double) : bool

11

Soldier

Soldier model

Attributes

damage : double

Structure

Structure model

Attributes

area : double

DefenceStructure

Defence structures model

Attributes

damage : int

Flying

Flying model

Attributes

speed : double

SpyFlying

Spy spacecraft model

Attributes

spyGrade : int

WarFlying

War flying model

Attributes

damage : int

12

StorageFlying

Storage flying model

Attributes

capacity : int

MotherShip

Mother ship model

Attributes

capacity : int

c. View

ViewManager

Manages the main menu, game screen and war screen views

MainMenuManager

Sets up the main menu view

GameScreenManager

Sets up the game(planet) view where the user gameplay happens

WarScreenManager

Sets up the battle(war) screen where two different users battle with each other

13

